Tribonacci Diophantine Quadruples

نویسندگان

  • Carlos Alexis Gómez Ruiz
  • Florian Luca
چکیده

In this paper, we show that there does not exist a quadruple of positive integers a1 < a2 < a3 < a4 such that aiaj + 1 (i 6= j) are all members of the Tribonacci sequence (Tn)n≥0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine quadruples in Z [ √ − 2 ]

In this paper, we study the existence of Diophantine quadruples with the property D(z) in the ring Z[ √−2 ]. We find several new polynomial formulas for Diophantine quadruples with the property D(a+ b √−2 ), for integers a and b satisfying certain congruence conditions. These formulas, together with previous results on this subject by Abu Muriefah, Al-Rashed and Franušić, allow us to almost com...

متن کامل

Adjugates of Diophantine Quadruples

Philip Gibbs Diophantine m-tuples with property D(n), for n an integer, are sets of m positive integers such that the product of any two of them plus n is a square. Triples and quadruples with this property can be classed as regular or irregular according to whether they satisfy certain polynomial identities. Given any such m-tuple, a symmetric integer matrix can be formed with the elements of ...

متن کامل

On Diophantine Quadruples of Fibonacci Numbers

We show that there are only finitely many Diophantine quadruples, that is, sets of four positive integers {a1, a2, a3, a4} such that aiaj +1 is a square for all 1 ≤ i < j ≤ 4, consisting of Fibonacci numbers.

متن کامل

Some diophantine quadruples in the ring Z [ √ − 2 ]

A complex diophantine quadruple with the property D (z), where z ∈ Z[√−2], is a subset of Z[√−2] of four elements such that the product of its any two distinct elements increased by z is a perfect square in Z[ √−2]. In the present paper we prove that if b is an odd integer, then there does not exist a diophantine quadruple with the property D(a + b √−2). For z = a + b√−2, where b is even, we pr...

متن کامل

Diophantine quadruples and Fibonacci numbers

A Diophantine m-tuple is a set of m positive integers with the property that product of any two of its distinct elements is one less then a square. In this survey we describe some problems and results concerning Diophantine m-tuples and their connections with Fibonacci numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015